A functional interaction between the signal peptide and the translation apparatus is detected by the use of a single point mutation which blocks translocation across mammalian endoplasmic reticulum.
نویسندگان
چکیده
A functional interaction between the signal sequence and the translation apparatus which may serve as a first step in chain targeting to the membrane is described. To this end, we exploited the powerful technique of molecular cloning in a procaryotic system and the well characterized translocation system of mammalian endoplasmic reticulum. The signal peptide of subunit B of the heat labile enterotoxin of Escherichia coli (EltB) was fused to several proteins. Single base substitutions were introduced in the signal peptide and their effect on protein synthesis and translocation was studied. We sought a single amino acid substitution which may define certain steps in the coordinated regulation of chain synthesis and targeting to the membrane. The substitution of proline for leucine at residue -8 in the signal peptide abolished all known functions of the signal peptide. In contrast to wild type signal peptide, the mutant signal peptide did not lead to arrest of nascent chain synthesis by signal recognition particle or translocation of the precursor protein across the membrane of the endoplasmic reticulum. Furthermore, the mutant signal peptide was not cleaved by purified E. coli signal peptidase. Interestingly, the mutation resulted in about a 2-fold increase in the rate of synthesis of the precursor protein, suggesting a role for the signal peptide in regulating the synthesis of the nascent secretory chain as a means of ensuring early and efficient targeting of this chain to the membrane. This role might involve interaction of the signal peptide with components of the translation apparatus and/or endogenous signal recognition particle. These results were obtained with three different fusion proteins carrying the signal peptide of EltB thus leading to the conclusion that the effect of the mutation on the structure and function of the signal peptide is independent of the succeeding sequence to which the signal peptide is attached.
منابع مشابه
Gating Behavior of Endoplasmic Reticulum Potassium Channels of Rat Hepatocytes in Diabetes
Background: Defects in endoplasmic reticulum homeostasis are common occurrences in different diseases, such as diabetes, in which the function of endoplasmic reticulum is disrupted. It is now well established that ion channels of endoplasmic reticulum membrane have a critical role in endoplasmic reticulum luminal homeostasis. Our previous studies showed the presence of an ATP-sensitive cationic...
متن کاملMathematical modeling of the effects of the signal recognition particle on translation and translocation of proteins across the endoplasmic reticulum membrane.
The kinetics of the signal recognition particle(SRP)-mediated process of protein translocation across the endoplasmic reticulum membrane was studied by mathematical modeling and complementary experiments. The following results were obtained. (1) A model according to which SRP directs the ribosome, rather than the mRNA, to the membrane is supported by experiments designed to discriminate between...
متن کاملAn evidence for a potassium channel in endoplasmic reticulum based on single channel recording in bilayer lipid membrane
Introduction Numerous studies have demonstrated the presence of potassium selective channels in membranes internal organelles. These channels are essential to a large variety of cellular processes including intracellular 2+ a signaling, protein recycling, charge neutralization and cell protection. In contrast to the sarcoplasmic reticulum + here potassium channels have been clearly ...
متن کاملTruncations of a secretory protein define minimum lengths required for binding to signal recognition particle and translocation across the endoplasmic reticulum membrane.
Nascent preproinsulin interacts with endoplasmic reticulum membranes after approximately 70-80 residues of the 116-amino acid precursor are polymerized (Eskridge, E. M., and Shields, D. (1983) J. Biol. Chem. 258, 11487-11491). To understand the relationship between the size of a nascent presecretory polypeptide and the efficiency of its translocation across the endoplasmic reticulum membrane, r...
متن کاملTranslocation in Yeast and Mammalian Cells: Not All Signal Sequences are Functionally Equivalent
In Saccharomyces cerevisiae, nascent carboxypeptidase Y (CPY) is directed into the endoplasmic reticulum by an NH2-terminal signal peptide that is removed before the glycosytated protein is transported to the vacuole. In this paper, we show that this signal peptide does not function in mammalian cells: CPY expressed in COS-1 cells is not glycosylated, does not associate with membranes, and reta...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 262 21 شماره
صفحات -
تاریخ انتشار 1987